Wissenschaftliche Literatur zum Thema Krebs und Ernährung

Hier finden Sie eine Auswahl an wissenschaftlicher Literatur rund um das Thema ketogene Ernährung und Krebs sowie zum Einfluss von sekundären Pflanzenstoffen und Vitaminen auf das Krebszellwachstum.

Allgemeiner Einfluss der Ernährung auf Krebs

  • Arem, Hannah et al. (2013): The Healthy Eating Index 2005 and risk for pancreatic cancer in the NIH-AARP study. J Natl Cancer Inst 105 (17): 1298–1305.
    [Link zum Artikel].
  • Arends, J. (2010): Metabolism in cancer patients. Anticancer Res 30 (5): 1863–1868.
    [Link zum Artikel].
  • Bayley, J. P.; Devilee, P. (2012): The Warburg effect in 2012. Curr Opin Oncol 24 (1): 62–67.
    [Link zum Abstract].
  • Bhaskaran, Krishnan et al. (2014): Body-mass index and risk of 22 specific cancers. A population-based cohort study of 5·24 million UK adults. The Lancet 384 (9945): 755–765.
    [Link zum Abstract].
  • Dang, C. V. (2012): Links between metabolism and cancer. Genes Dev 26 (9): 877–890.
    [Link zum Artikel].
  • Garcia-Jimenez, C. et al. (2014): A new link between diabetes and cancer: enhanced WNT/beta-catenin signaling by high glucose. J Mol Endocrinol 52 (1)R51-66.
    [Link zum Artikel].
  • Tennant, D. A.; Duran, R. V.; Gottlieb, E. (2010): Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10 (4): 267–277.
    [Link zum Abstract].

Einfluss von Zucker auf die Krebsentstehung

  • Bruijn, K. M. de et al. (2013): Systematic review and meta-analysis of the association between diabetes mellitus and incidence and mortality in breast and colorectal cancer. Br J Surg 100 (11): 1421–1429.
    [Link zum Abstract].
  • Eslamian, G. et al. (2013): Higher glycemic index and glycemic load diet is associated with increased risk of esophageal squamous cell carcinoma: a case-control study. Nutr Res 33 (9): 719–725.
    [Link zum Abstract].
  • Gnagnarella, P. et al. (2008): Glycemic index, glycemic load, and cancer risk: a meta-analysis. Am J Clin Nutr 87 (6): 1793–1801.
    [Link zum Artikel].
  • Goto, A. et al. (2016): High hemoglobin A1c levels within the non-diabetic range are associated with the risk of all cancers. Int J Cancer 138 (7): 1741–1753.
    [Link zum Artikel].
  • Hu, J. et al. (2013): Glycemic index, glycemic load and cancer risk. Ann Oncol 24 (1): 245–251.
    [Link zum Artikel].
  • Hua, F.; Yu, J. J.; Hu, Z. W. (2016): Diabetes and cancer, common threads and missing links. Cancer Lett 374 (1): 54–61.
    [Link zum Abstract].
  • Huang, Y. et al. (2014): Prediabetes and the risk of cancer: a meta-analysis. Diabetologia 57 (11): 2261–2269.
    [Link zum Abstract].
  • Jansen, N. (2017): Die Bedeutung des ketogenen Stoffwechsels in der Tumortherapie. Lebendige Wissenschaft: Spitzenforschung in der Gynäkologischen Onkologie und Senologie.
    [Link zum Artikel].
  • Jee, S. H. et al. (2005): Fasting serum glucose level and cancer risk in Korean men and women. JAMA 293 (2): 194–202.
    [Link zum Artikel].
  • Liu, H. et al. (2010): Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Res 70 (15): 6368–6376.
    [Link zum Artikel].
  • Onodera, Y.; Nam, J. M.; Bissell, M. J. (2014): Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and O-GlcNAc pathways. J Clin Invest 124 (1): 367–384.
    [Link zum Artikel].
  • Romieu, I. et al. (2012): Dietary glycemic index and glycemic load and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr 96 (2): 345–355.
    [Link zum Artikel].
  • Schmidt, J. A. et al. (2014): Insulin-like growth factor-i and risk of differentiated thyroid carcinoma in the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev 23 (6): 976–985.
    [Link zum Artikel].
  • Turati, F. et al. (2015): High glycemic index and glycemic load are associated with moderately increased cancer risk. Mol Nutr Food Res 59 (7): 1384–1394.
    [Link zum Abstract].

Ketogene Ernährung / Metabolische Therapie

  • Abdelwahab, Mohammed G. et al. (2012): The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS One 7 (5)e36197.
    [Link zum Artikel].
  • Allen, B. G. et al. (2014): Ketogenic diets as an adjuvant cancer therapy: History and potential mechanism. Redox Biol 2: 963–970.
    [Link zum Artikel].
  • Allen, Bryan G. et al. (2013): Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin Cancer Res 19 (14): 3905–3913.
    [Link zum Artikel].
  • Brand, A. et al. (2016): LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells. Cell Metab 24(5):657-671.
    [Link zum Artikel].
  • Branca, J. J.; Pacini, S.; Ruggiero, M. (2015): Effects of Pre-surgical Vitamin D Supplementation and Ketogenic Diet in a Patient with Recurrent Breast Cancer. Anticancer Res 35 (10): 5525–5532.
    [Link zum Abstract ].
  • Branco, A. F. et al. (2016): Ketogenic diets: from cancer to mitochondrial diseases and beyond. Eur J Clin Invest 46 (3): 285–298.
    [Link zum Abstract ].
  • Brandhorst, S. et al. (2017): Protective effects of short-term dietary restriction in surgical stress and chemotherapy. Ageing Res Rev.
    [Link zum Artikel].
  • Breitkreutz, R. et al. (2005): Effects of a high-fat diet on body composition in cancer patients receiving chemotherapy: a randomized controlled study. Wien Klin Wochenschr 117 (19-20): 685–692.
    [Link zum Artikel].
  • Champ, C. E. et al. (2013): Nutrient restriction and radiation therapy for cancer treatment: when less is more. Oncologist 18 (1): 97–103.
    [Link zum Artikel].
  • Champ, C. E. et al. (2014): Targeting metabolism with a ketogenic diet during the treatment of glioblastoma multiforme. J Neurooncol 117 (1): 125–131.
    [Link zum Abstract ].
  • Chang, H. T.; Olson, L. K.; Schwartz, K. A. (2013): Ketolytic and glycolytic enzymatic expression profiles in malignant gliomas: implication for ketogenic diet therapy. Nutr Metab (Lond) 10 (1): 47.
    [Link zum Artikel].
  • Diaz-Moralli, S. et al. (2016): A key role for transketolase-like 1 in tumor metabolic reprogramming. Oncotarget.
    [Link zum Artikel].
  • Dorr, JR et al. (2013): Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501 (7467): 421–425.
    [Link zum Abstract ].
  • El, Mjiyad N. et al. (2011): Sugar-free approaches to cancer cell killing. Oncogene 30 (3): 253–264.
    [Link zum Abstract ].
  • Emond, J. A. et al. (2014): Risk of breast cancer recurrence associated with carbohydrate intake and tissue expression of IGFI receptor. Cancer Epidemiol Biomarkers Prev 23 (7): 1273–1279.
    [Link zum Artikel].
  • Fine, E. J. et al. (2009): Acetoacetate reduces growth and ATP concentration in cancer cell lines which over-express uncoupling protein 2. Cancer Cell Int 9: 14.
    [Link zum Artikel].
  • Fine, E. J. et al. (2012): Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition 28 (10): 1028–1035.
    [Link zum Abstract ].
  • Fogg, V. C.; Lanning, N. J.; Mackeigan, J. P. (2011): Mitochondria in cancer: at the crossroads of life and death. Chin J Cancer 30 (8): 526–539.
    [Link zum Artikel].
  • Freedland, S. J. et al. (2008): Carbohydrate restriction, prostate cancer growth, and the insulin-like growth factor axis. Prostate 68 (1): 11–19.
    [Link zum Artikel].
  • Gatenby, R. A.; Gillies, R. J. (2004): Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4 (11): 891–899.
    [Link zum Abstract ].
  • Groot, S. de et al. (2015): The effects of short-term fasting on tolerance to (neo) adjuvant chemotherapy in HER2-negative breast cancer patients: a randomized pilot study. BMC Cancer 15: 652.
    [Link zum Artikel].
  • Ho, V. W. et al. (2011): A low carbohydrate, high protein diet slows tumor growth and prevents cancer initiation. Cancer Res 71 (13): 4484–4493.
    [Link zum Artikel].
  • Hsu, P. P.; Sabatini, D. M. (2008): Cancer cell metabolism: Warburg and beyond. Cell 134 (5): 703–707.
    [Link zum Artikel].
  • Husain, Z. et al. (2013): Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J Immunol 191 (3): 1486–1495.
    [Link zum Artikel].
  • Jansen, N.; Walach, H. (2016): The development of tumours under a ketogenic diet in association with the novel tumour marker TKTL1: A case series in general practice. Oncol Lett 11 (1): 584–592.
    [Link zum Artikel].
  • Jin, L. et al. (2014): The metastatic potential of triple-negative breast cancer is decreased via caloric restriction-mediated reduction of the miR-17~92 cluster. Breast Cancer Res Treat 146 (1): 41–50.
    [Link zum Artikel].
  • Kankova, K.; Hrstka, R. (2012): Cancer as a metabolic disease and diabetes as a cancer risk? Klin Onkol 25 Suppl 22S26-31.
    [Link zum Abstract ].
  • Klement, R. J. (2014): Restricting carbohydrates to fight head and neck cancer-is this realistic? Cancer Biol Med 11 (3): 145–161.
    [Link zum Artikel].
  • Klement, R. J.; Champ, C. E. (2014): Calories, carbohydrates, and cancer therapy with radiation: exploiting the five R’s through dietary manipulation. Cancer Metastasis Rev 33 (1): 217–229.
    [Link zum Artikel].
  • Klement, R. J.; Kammerer, U. (2011): Is there a role for carbohydrate restriction in the treatment and prevention of cancer? Nutr Metab (Lond) 8: 75.
    [Link zum Artikel].
  • Klement, R. J.; Sweeney, R. A. (2016): Impact of a ketogenic diet intervention during radiotherapy on body composition: I. Initial clinical experience with six prospectively studied patients. BMC Res Notes 9: 143.
    [Link zum Artikel].
  • Lee, C. et al. (2012): Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med 4 (124)124ra27.
    [Link zum Artikel].
  • Lee, C.; Longo, V. D. (2011): Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene 30 (30): 3305–3316.
    [Link zum Abstract ].
  • Li, B. et al. (2014): Downregulation of the Werner syndrome protein induces a metabolic shift that compromises redox homeostasis and limits proliferation of cancer cells. Aging Cell 13 (2): 367–378.
    [Link zum Artikel].
  • Longo, V. D.; Fontana, L. (2010): Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci 31 (2): 89–98.
    [Link zum Artikel].
  • Lu, W., Logsdon, CD., Abbruzzese, JL (2013): Cancer Metabolism and Its Therapeutic Implications. J Cell Sci Ther 04 (02).
    [Link zum Artikel].
  • Lussier, D. M. et al. (2016): Enhanced immunity in a mouse model of malignant glioma is mediated by a therapeutic ketogenic diet. BMC Cancer 16: 310.
    [Link zum Artikel].
  • Lv, M. et al. (2014): Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis. PLoS One 9 (12)e115147.
    [Link zum Artikel].
  • Marinac, Catherine R. et al. (2016): Prolonged Nightly Fasting and Breast Cancer Prognosis. JAMA Oncol 2 (8): 1049–1055.
    [Link zum Abstract].
  • Maurer, G. D. et al. (2011): Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer 11: 315.
    [Link zum Artikel].
  • Meijer, T. W. et al. (2012): Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin Cancer Res 18 (20): 5585–5594.
    [Link zum Artikel].
  • Oleksyszyn, J. (2011): The complete control of glucose level utilizing the composition of ketogenic diet with the gluconeogenesis inhibitor, the anti-diabetic drug metformin, as a potential anti-cancer therapy. Med Hypotheses 77 (2): 171–173.
    [Link zum Abstract ].
  • Oliveira, Camila L.P. et al. (2017): A Nutritional Perspective of Ketogenic Diet in Cancer. A Narrative Review. Journal of the Academy of Nutrition and Dietetics.
    [Link zum Abstract].
  • Otto, C. et al. (2008): Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer 8: 122.
    [Link zum Artikel].
  • Otto, C. et al. (2014): Experimentelle Untersuchungen zur Verstoffwechselung von Ketonkörpern und Laktat durch Tumorzellen des Gastrointestinaltrakts. Aktuel Ernahrungsmed 39 (01): 51–59.
    [Link zum Artikel].
  • Paoli, A. et al. (2013): Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr 67 (8): 789–796.
    [Link zum Artikel].
  • Phan, L. M.; Yeung, S. C.; Lee, M. H. (2014): Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med 11 (1): 1–19.
    [Link zum Artikel].
  • Poff, A. M. et al. (2013): The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLoS One 8 (6)e65522.
    [Link zum Artikel].
  • Poff, A. M. et al. (2014): Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer. Int J Cancer 135 (7): 1711–1720.
    [Link zum Artikel].
  • Raffaghello, L. et al. (2010): Fasting and differential chemotherapy protection in patients. Cell Cycle 9 (22): 4474–4476.
    [Link zum Artikel].
  • Rieger, J. et al. (2014): ERGO: a pilot study of ketogenic diet in recurrent glioblastoma. Int J Oncol 44 (6): 1843–1852.
    [Link zum Artikel].
  • Safdie, F. et al. (2012): Fasting enhances the response of glioma to chemo- and radiotherapy. PLoS One 7 (9)e44603.
    [Link zum Artikel].
  • Schmidt, M. et al. (2011): Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: A pilot trial. Nutr Metab (Lond) 8 (1): 54.
    [Link zum Artikel].
  • Schroeder, U. et al. (2013): Decline of lactate in tumor tissue after ketogenic diet: in vivo microdialysis study in patients with head and neck cancer. Nutr Cancer 65 (6): 843–849.
    [Link zum Abstract ].
  • Schwartz, K. et al. (2015): Treatment of glioma patients with ketogenic diets: report of two cases treated with an IRB-approved energy-restricted ketogenic diet protocol and review of the literature. Cancer Metab 3: 3.
    [Link zum Artikel].
  • Seyfried, T. N. et al. (2014): Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis 35 (3): 515–527.
    [Link zum Artikel].
  • Seyfried, T. N.; Mukherjee, P. (2005): Targeting energy metabolism in brain cancer: review and hypothesis. Nutr Metab (Lond) 2: 30.
    [Link zum Artikel].
  • Shi, Y. et al. (2012): Starvation-induced activation of ATM/Chk2/p53 signaling sensitizes cancer cells to cisplatin. BMC Cancer 12: 571.
    [Link zum Artikel].
  • Shukla, S. K. et al. (2014): Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab 2: 18.
    [Link zum Artikel].
  • Simone, B. A. et al. (2013): Selectively starving cancer cells through dietary manipulation: methods and clinical implications. Future Oncol 9 (7): 959–976.
    [Link zum Abstract ].
  • Smyl, C. (2016): Ketogenic Diet and Cancer-a Perspective. Recent Results Cancer Res 207: 233–240.
    [Link zum Abstract ].
  • Tan-Shalaby, J. (2017): Ketogenic Diets and Cancer. Emerging Evidence. Fed Pract 34 (supp 1)37S–42S.
    [Link zum Artikel].
  • Veech, R. L. (2004): The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 70 (3): 309–319.
    [Link zum Abstract ].
  • Vergati, M. et al. (2017): Ketogenic diet and other dietary intervention strategies in the treatment of cancer. Curr Med Chem.
    [Link zum Artikel].
  • Wanka, C.; Steinbach, J. P.; Rieger, J. (2012): Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis. J Biol Chem 287 (40): 33436–33446.
    [Link zum Artikel].
  • Woolf, E. C. et al. (2015): The Ketogenic Diet Alters the Hypoxic Response and Affects Expression of Proteins Associated with Angiogenesis, Invasive Potential and Vascular Permeability in a Mouse Glioma Model. PLoS One 10 (6)e0130357.
    [Link zum Artikel].
  • Woolf, E. C.; Scheck, A. C. (2015): The ketogenic diet for the treatment of malignant glioma. J Lipid Res 56 (1): 5–10.
    [Link zum Artikel].
  • Woolf, E. C.; Syed, N.; Scheck, A. C. (2016): Tumor Metabolism, the Ketogenic Diet and β-Hydroxybutyrate. Novel Approaches to Adjuvant Brain Tumor Therapy. Front. Mol. Neurosci. 9e36197.
    [Link zum Artikel]
  • Wright, C.; Simone, N. L. (2016): Obesity and tumor growth: inflammation, immunity, and the role of a ketogenic diet. Curr Opin Clin Nutr Metab Care 19 (4): 294–299.
    [Link zum Abstract].
  • Zhao, F. et al. (2010): Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming. Oncogene 29 (20): 2962–2972.
    [Link zum Artikel].
  • Zuccoli, G. et al. (2010): Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report. Nutr Metab (Lond) 7: 33.
    [Link zum Artikel].

Ernährung und Zucker in der Krebsnachsorge

  • Aune, D. et al. (2012): Dietary fructose, carbohydrates, glycemic indices and pancreatic cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol 23 (10): 2536–2546.
    [Link zum Artikel].
  • Braakhuis, A. J.; Campion, P.; Bishop, K. S. (2016): Reducing Breast Cancer Recurrence: The Role of Dietary Polyphenolics. Nutrients 8 (9).
    [Link zum Artikel].
  • Champ, C. E. et al. (2012): Weight gain, metabolic syndrome, and breast cancer recurrence: are dietary recommendations supported by the data? Int J Breast Cancer 2012: 506868.
    [Link zum Artikel].
  • Emond, J. A. et al. (2014): Risk of breast cancer recurrence associated with carbohydrate intake and tissue expression of IGFI receptor. Cancer Epidemiol Biomarkers Prev 23 (7): 1273–1279.
    [Link zum Artikel].
  • Meyerhardt, J. A. et al. (2012): Dietary glycemic load and cancer recurrence and survival in patients with stage III colon cancer: findings from CALGB 89803. J Natl Cancer Inst 104 (22): 1702–1711.
    [Link zum Artikel].
  • Minicozzi, P. et al. (2013): High fasting blood glucose and obesity significantly and independently increase risk of breast cancer death in hormone receptor-positive disease. Eur J Cancer 49 (18): 3881–3888.
    [Link zum Abstract].

Besondere Lebensmittelinhaltsstoffe

Allgemein

  • Farzaei, M. H.; Bahramsoltani, R.; Rahimi, R. (2016): Phytochemicals as Adjunctive with Conventional Anticancer Therapies. Curr Pharm Des 22 (27): 4201–4218.
    [Link zum Artikel].
  • Keijer, J. et al. (2011): Bioactive food components, cancer cell growth limitation and reversal of glycolytic metabolism. Biochim Biophys Acta 1807 (6): 697–706.
    [Link zum Artikel].
  • Lodi, A. et al. (2016): Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolism. npj Precision Oncology 1 (8).
    [Link zum Artikel].

Brokkoli und Sulforaphan

  • Bauman, J. E. et al. (2016): Prevention of Carcinogen-Induced Oral Cancer by Sulforaphane. Cancer Prev Res (Phila) 9 (7): 547–557.
    [Link zum Artikel].
  • Bijangi-Vishehsaraei, K. et al. (2017): Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell-like spheroids, and tumor xenografts through multiple cell signaling pathways. J Neurosurg: 1–12.
    [Link zum Abstract].
  • Ganai, S. A. (2016): Histone deacetylase inhibitor sulforaphane: The phytochemical with vibrant activity against prostate cancer. Biomed Pharmacother 81: 250–257.
    [Link zum Abstract].
  • Jiang, L. L. et al. (2016): Sulforaphane suppresses in vitro and in vivo lung tumorigenesis through downregulation of HDAC activity. Biomed Pharmacother 78: 74–80.
    [Link zum Abstract].
  • Kallifatidis, G. et al. (2009): Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling. Gut 58 (7): 949–963.
    [Link zum Abstract ].
  • Kim, D. H. et al. (2015): Sulforaphane inhibits hypoxia-induced HIF-1alpha and VEGF expression and migration of human colon cancer cells. Int J Oncol 47 (6): 2226–2232.
    [Link zum Abstract].
  • Liu, K. C. et al. (2016): Sulforaphane Induces Cell Death through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells. Am J Chin Med: 1289–1310.
    [Link zum Abstract].
  • Martin, S. L.; Kala, R.; Tollefsbol, T. O. (2017): Mechanisms for inhibition of colon cancer cells by sulforaphane through epigenetic modulation of microRNA-21 and human telomerase reverse transcriptase (hTERT) down-regulation. Curr Cancer Drug Targets.
    [Link zum Artikel].
  • Sarkar, R. et al. (2012): Sulphoraphane, a naturally occurring isothiocyanate induces apoptosis in breast cancer cells by targeting heat shock proteins. Biochem Biophys Res Commun 427 (1): 80–85.
    [Link zum Abstract].

Curcuma und Curcumin

  • Allegra, A. et al. (2017): Anticancer Activity of Curcumin and Its Analogues: Preclinical and Clinical Studies. Cancer Invest 35 (1): 1–22.
    [Link zum Abstract].
  • Cruz-Corres et al. (2006):Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. In: Clin Gastroenterol Hepatol 4 (8), 1035–1038.
    [Link zum Abstract].
  • Deng, Y. I.; Verron, E.; Rohanizadeh, R. (2016): Molecular Mechanisms of Anti-metastatic Activity of Curcumin. Anticancer Res 36 (11): 5639–5647.
    [Link zum Abstract].
  • Naik, S.; Thakare, V.; Patil S (2011): Protective effect of curcumin on experimentally induced inflammation, hepatotoxicity and cardiotoxicity in rats: evidence of its antioxidant property. Exp Toxicol Pathol 63 (5): 419-431.
    [Link zum Abstract].
  • Killian, P. H. et al. (2012): Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and -2. Carcinogenesis 33 (12): 2507–2519.
    [Link zum Artikel].
  • Mahlknecht, U. (2013): Den Krebs im Visier. Aktuel Ernahrungsmed 38 (S 01)S37-S41.
    [Link zum Artikel].
  • Murakami, A. et al. (2013): Curcumin combined with turmerones, essential oil components of turmeric, abolishes inflammation-associated mouse colon carcinogenesis. Biofactors 39 (2): 221–232.
    [Link zum Abstract ].
  • Schaffer, M.; Schaffer, P. M.; Bar-Sela, G. (2015): An update on Curcuma as a functional food in the control of cancer and inflammation. Curr Opin Clin Nutr Metab Care 18 (6): 605–611.
    [Link zum Abstract].
  • Toden, S. et al. (2015): Novel Evidence for Curcumin and Boswellic Acid-Induced Chemoprevention through Regulation of miR-34a and miR-27a in Colorectal Cancer. Cancer Prev Res (Phila) 8 (5): 431–443.
    [Link zum Artikel].

Galactose

  • Isenberg, J. et al. (1997): Liver lectin blocking with D-galactose to prevent hepatic metastases in colorectal carcinoma patients. Anticancer Res 17 (5B): 3767–3772.
    [Link zum Artikel].
  • Kosik, J. et al. (1997): Prevention of hepatic metastases by liver lectin blocking with D-galactose in stomach cancer patients. A prospectively randomized clinical trial. Anticancer Res 17 (2B): 1411–1415.
    [Link zum Artikel].
  • Kosterlitz, H.; Wedler, H. W. (1933): Untersuchungen über die Verwertung der Galaktose in physiologischen und pathologischen Zuständen. Z. Ges. Exp. Med. 87 (1): 397–404.
    [Link zum Artikel].
  • Lembke, A.; Pause, B. (1989): Anticaries effectiveness of D(+)-galactose. Z Stomatol 86 (4): 179–189.
    [Link zum Artikel].
  • Li, N. et al. (2011): D-galactose induces necroptotic cell death in neuroblastoma cell lines. J Cell Biochem 112 (12): 3834–3844.
    [Link zum Artikel].
  • Mohammad, M. A. et al. (2011): Galactose promotes fat mobilization in obese lactating and nonlactating women. Am J Clin Nutr 93 (2): 374–381.
    [Link zum Artikel].
  • Warczynski, P. et al. (1997): Prevention of hepatic metastases by liver lectin blocking with D-galactose in colon cancer patients. A prospectively randomized clinical trial. Anticancer Res 17 (2B): 1223–1226.
    [Link zum Artikel].

Grüner Tee und EGCG

  • Am Dostal et al. (2015): The safety of green tea extract supplementation in postmenopausal women at risk for breast cancer: results of the Minnesota Green Tea Trial. Food Chem Toxicol 83: 26–35.
    [Link zum Artikel].
  • Fujiki, H. et al. (2015): Primary cancer prevention by green tea, and tertiary cancer prevention by the combination of green tea catechins and anticancer compounds. J Cancer Prev 20 (1): 1–4.
    [Link zum Artikel].
  • Hayakawa, S. et al. (2016): Anti-Cancer Effects of Green Tea by Either Anti- or Pro- Oxidative Mechanisms. Asian Pac J Cancer Prev 17 (4): 1649–1654.
    [Link zum Abstract].
  • Hu, F. et al. (2015): EGCG synergizes the therapeutic effect of cisplatin and oxaliplatin through autophagic pathway in human colorectal cancer cells. J Pharmacol Sci 128 (1): 27–34.
    [Link zum Artikel].
  • Huang, Y. et al. (2015): Green tea polyphenol epigallocatechin-O-gallate induces cell death by acid sphingomyelinase activation in chronic myeloid leukemia cells. Oncol Rep 34 (3): 1162–1168.
    [Link zum Artikel].
  • Liu, J et al. (2016): Association of green tea consumption with mortality from all-cause, cardiovascular disease and cancer in a Chinese cohort of 165,000 adult men. Eur J Epidemiol. 2016 Sep;31(9):853-65. doi: 10.1007/s10654-016-0173-3. Epub 2016 Jul 2.
    [Link zum Abstract]
  • Mahlknecht, U. (2013): Den Krebs im Visier. Aktuel Ernahrungsmed 38 (S 01)S37-S41.
    [Link zum Artikel].
  • Mayr, C. et al. (2015): The green tea catechin epigallocatechin gallate induces cell cycle arrest and shows potential synergism with cisplatin in biliary tract cancer cells. BMC Complement Altern Med 15: 194.
    [Link zum Artikel].
  • Mereles, D.; Hunstein, W. (2011): Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci 12 (9): 5592–5603.
    [Link zum Artikel].
  • Münstedt, K.; Männle, H. (2015): Grüner Tee zur primären und tertiären Prophylaxe des Mammakarzinoms. DZO 47 (01): 10–12.
    [Link zum Artikel].
  • Sanchez-Tena, S. et al. (2013): Epicatechin gallate impairs colon cancer cell metabolic productivity. J Agric Food Chem 61 (18): 4310–4317.
    [Link zum Abstract ].
  • Shay, J. et al. (2015): Molecular Mechanisms and Therapeutic Effects of (-)-Epicatechin and Other Polyphenols in Cancer, Inflammation, Diabetes, and Neurodegeneration. Oxid Med Cell Longev 2015: 181260.
    [Link zum Artikel].

Magnesium

  • Am Gorczyca et al. (2015): Association between magnesium intake and risk of colorectal cancer among postmenopausal women. Cancer Causes Control 26 (12): 1761–1769.
    [Link zum Artikel].
  • Dibaba, D. et al. (2015): Magnesium intake and incidence of pancreatic cancer: the VITamins and Lifestyle study. Br J Cancer 113 (11): 1615–1621.
    [Link zum Artikel].
  • Ko, H. J. et al. (2014): Dietary magnesium intake and risk of cancer: a meta-analysis of epidemiologic studies. Nutr Cancer 66 (6): 915–923.
    [Link zum Artikel].
  • Mahabir, S. et al. (2008): Dietary magnesium and DNA repair capacity as risk factors for lung cancer. Carcinogenesis 29 (5): 949–956.
    [Link zum Artikel].
  • Tao, M. H. et al. (2016): Associations of intakes of magnesium and calcium and survival among women with breast cancer: results from Western New York Exposures and Breast Cancer (WEB) Study. Am J Cancer Res 6 (1): 105–113.
    [Link zum Artikel].

Polyphenole

  • Abdal, Dayem A. et al. (2016): The Anti-Cancer Effect of Polyphenols against Breast Cancer and Cancer Stem Cells: Molecular Mechanisms. Nutrients 8 (9).
    [Link zum Artikel].
  • Braakhuis, A. J.; Campion, P.; Bishop, K. S. (2016): Reducing Breast Cancer Recurrence: The Role of Dietary Polyphenolics. Nutrients 8 (9).
    [Link zum Abstract].
  • Jung, K. H. et al. (2013): Resveratrol suppresses cancer cell glucose uptake by targeting reactive oxygen species-mediated hypoxia-inducible factor-1alpha activation. J Nucl Med 54 (12): 2161–2167.
    [Link zum Artikel].
  • Niedzwiecki, A. et al. (2016): Anticancer Efficacy of Polyphenols and Their Combinations. Nutrients 8 (9).
    [Link zum Artikel].
  • Shen, M.; Chan, T. H.; Dou, Q. P. (2012): Targeting tumor ubiquitin-proteasome pathway with polyphenols for chemosensitization. Anticancer Agents Med Chem 12 (8): 891–901.
    [Link zum Artikel].
  • Zhou, W. et al. (2010): Dietary polyphenol quercetin targets pancreatic cancer stem cells. Int J Oncol 37 (3): 551–561.
    [Link zum Artikel].
  • Zhou, Y. et al. (2016): Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 8 (8).
    [Link zum Abstract].

Omega-3-Fettsäuren

  • Lorgeril, M. de; Salen, P. (2014): Helping women to good health: breast cancer, omega-3/omega-6 lipids, and related lifestyle factors. BMC Med 12: 54.
    [Link zum Artikel].
  • Manzi, L. et al. (2015): Effect of Dietary omega-3 Polyunsaturated Fatty Acid DHA on Glycolytic Enzymes and Warburg Phenotypes in Cancer. Biomed Res Int 2015: 137097.
    [Link zum Abstract].
  • Merendino, N. et al. (2013): Dietary omega -3 polyunsaturated fatty acid DHA: a potential adjuvant in the treatment of cancer. Biomed Res Int 2013: 310186.
    [Link zum Abstract].
  • Mouradian, M. et al. (2015): Docosahexaenoic acid attenuates breast cancer cell metabolism and the Warburg phenotype by targeting bioenergetic function. Mol Carcinog 54 (9): 810–820.
    [Link zum Abstract ].
  • Sun, H. et al. (2013): Anti-cancer activity of DHA on gastric cancer–an in vitro and in vivo study. Tumour Biol 34 (6): 3791–3800.
    [Link zum Abstract].
  • Yu, Jing et al. (2017): Effects of omega-3 fatty acids on patients undergoing surgery for gastrointestinal malignancy: a systematic review and meta-analysis. BMC Cancer 17 (1): 271.
    [Link zum Artikel].
  • Yum, H. W.; Na, H. K.; Surh, Y. J. (2016): Anti-inflammatory effects of docosahexaenoic acid: Implications for its cancer chemopreventive potential. Semin Cancer Biol.
    [Link zum Artikel].

Ribose

  • Bishop, D. (2010): Dietary supplements and team-sport performance. Sports Med 40 (12): 995–1017.
    [Link zum Abstract ].
  • Boer, P.; Sperling, O. (1995): Role of cellular ribose-5-phosphate content in the regulation of 5-phosphoribosyl-1-pyrophosphate and de novo purine synthesis in a human hepatoma cell line. Metabolism 44 (11): 1469–1474.
    [Link zum Abstract ].
  • Hellsten, Y.; Skadhauge, L.; Bangsbo, J. (2004): Effect of ribose supplementation on resynthesis of adenine nucleotides after intense intermittent training in humans. Am J Physiol Regul Integr Comp Physiol 286 (1)R182-8.
    [Link zum Abstract ].
  • Lee, H. J. et al. (2015): Synergistic inhibition of Streptococcal biofilm by ribose and xylitol. Arch Oral Biol 60 (2): 304–312.
    [Link zum Abstract ].
  • Seifert, J. G. et al. (2009): The role of ribose on oxidative stress during hypoxic exercise: a pilot study. J Med Food 12 (3): 690–693.
    [Link zum Abstract ].
  • Shecterle, L.; Kasubick, R.; St, Cyr J. (2008): D-ribose benefits restless legs syndrome. J Altern Complement Med 14 (9): 1165–1166.
    [Link zum Abstract ].
  • Teitelbaum, J. E.; Johnson, C.; St, Cyr J. (2006): The use of D-ribose in chronic fatigue syndrome and fibromyalgia: a pilot study. J Altern Complement Med 12 (9): 857–862.
    [Link zum Abstract ].
  • Vijay, N. et al. (2008): D-ribose benefits heart failure patients. J Med Food 11 (1): 199–200.
    [Link zum Abstract].

Salvestrole

  • Schaefer, B. A. et al. (2012): Cancer and Related Case Studies Involving Salvestrol and CYP1B1. JOM 27 (3): 131–138.
    [Link zum Artikel].
  • Schaefer, B. A. et al. (2007): Nutrition and Cancer: Salvestrol Case Studies. JOM 22 (2): 177–182.
    [Link zum Artikel].
  • Schaefer, B. A. et al. (2010): Nutrition and Cancer: Further Case Studies Involving Salvestrol. JOM 25 (1): 17–23.
    [Link zum Artikel].
  • Tan, H. L. et al. (2007): Salvestrols: A New Perspective in Nutritional Research. JOM 22 (1): 39–47.
    [Link zum Artikel].
  • Ware, William R. (2009): Nutrition and the prevention and treatment of cancer: association of cytochrome P450 CYP1B1 with the role of fruit and fruit extracts. Integr Cancer Ther 8 (1): 22–28.
    [Link zum Artikel].

Tocomin, Vitamin E und Tocotrienole

  • Eitsuka, T. et al. (2016): Synergistic Anticancer Effect of Tocotrienol Combined with Chemotherapeutic Agents or Dietary Components: A Review. Int J Mol Sci 17 (10).
    [Link zum Artikel].
  • Husain, K. et al. (2011): Vitamin E delta-tocotrienol augments the antitumor activity of gemcitabine and suppresses constitutive NF-kappaB activation in pancreatic cancer. Mol Cancer Ther 10 (12): 2363–2372.
    [Link zum Artikel].
  • Jiang, Q. et al. (2012): Gamma-tocotrienol induces apoptosis and autophagy in prostate cancer cells by increasing intracellular dihydrosphingosine and dihydroceramide. Int J Cancer 130 (3): 685–693.
    [Link zum Artikel].
  • Luk, S. U. et al. (2011): Gamma-tocotrienol as an effective agent in targeting prostate cancer stem cell-like population. Int J Cancer 128 (9): 2182–2191.
    [Link zum Artikel].
  • Shi, W. T. et al. (2016): Palm Tocotrienols Reduce Lipopolysaccharide-Stimulated Inflammatory Responses of Microglia. MJMHS 12 (2): 1–8.
    [Link zum Artikel].
  • Shibata, A. et al. (2008): Tocotrienol inhibits secretion of angiogenic factors from human colorectal adenocarcinoma cells by suppressing hypoxia-inducible factor-1alpha. J Nutr 138 (11): 2136–2142.
    [Link zum Artikel].
  • Sylvester, P. W. et al. (2014): Potential role of tocotrienols in the treatment and prevention of breast cancer. Biofactors 40 (1): 49–58.
    [Link zum Abstract ].
  • Sylvester, P. W. et al. (2011): Tocotrienol combination therapy results in synergistic anticancer response. Front Biosci (Landmark Ed) 16: 3183–3195.
    [Link zum Artikel].
  • Szabolcs, P. et al. (2016): A Systematic Review of Global Alpha-Tocopherol Status as Assessed by Nutritional Intake Levels and Blood Serum Concentrations. Int J Vitam Nutr Res: 1–21.
    [Link zum Artikel].
  • Yap, W. N. et al. (2010): In vivo evidence of gamma-tocotrienol as a chemosensitizer in the treatment of hormone-refractory prostate cancer. Pharmacology 85 (4): 248–258.
    [Link zum Abstract ].

Vitamin D3 und Vitamin K2

  • Gröber, U. et al. (2015): Vitamin D in der onkologischen Intervention. Update 2015. DZO 47 (04): 173–177.
    [Link zum Artikel].
  • McDonnell, S. L. et al. (2016): Serum 25-Hydroxyvitamin D Concentrations /=40 ng/ml Are Associated with 65% Lower Cancer Risk: Pooled Analysis of Randomized Trial and Prospective Cohort Study. PLoS One 11 (4)e0152441.
    [Link zum Artikel].
  • Reichrath, J.; Reichrath, S. (2013): Die Haut als endokrines Organ. Vitamin D, Sonnenstrahlung und Krebsprävention. Zs.f.Orthomol.Med. 11 (02): 10–12.
    [Link zum Artikel].
  • Sada, E. et al. (2010): Vitamin K2 modulates differentiation and apoptosis of both myeloid and erythroid lineages. Eur J Haematol 85 (6): 538–548.
    [Link zum Abstract ].
  • Spitz, J. (2014): Zur Bedeutung des Sonnenhormons Vitamin D in der Onkologie – ein Update. DZO 46 (03): 96–102.
    [Link zum Artikel].